Numerical Integration

-As we've seen often there aren't near as many rules for integration as there are for differentiation.
-In fact, there are many functions that don't have a simple antiderivative and we need use an approximation method such as the limit-sum definition we originally used to define a definite integral.
-One of the most popular of these is the Trapezoid Rule.

Trapezoid Rule

Just as we did with rectangles we will need to partition the interval into n subintervals:

$$
\Delta x=\frac{b-a}{n}
$$

An example of this with 6 subintervals would be

The area of a trapezoid is given by:

$$
A_{i}=\frac{\Delta x}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right]
$$

If we remember and use the definite integral as the summation of multiple parts we get:
$\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right]+\frac{\Delta x}{2}\left[f\left(x_{1}\right)+f\left(x_{2}\right)\right]+\cdots+\frac{\Delta x}{2}\left[f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]$
If we clean this up and generalize this we get the Trapezoidal Rule:

$$
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{2}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

Notice that the coefficients of the terms follow the pattern $1,2, \ldots, 2,1$.

Example

Use 4 sub-intervals to approximate the value of $\int_{0}^{2} e^{x^{2}} d x$.
First, find the width of the sub-interval:

$$
\Delta x=\frac{b-a}{n}=\frac{2-0}{4}=\frac{1}{2}
$$

This breaks the interval into the sub-intervals:

$$
[0,0.5],[0.5,1],[1,1.5],[1.5,2]
$$

Using the Trapezoidal Rule:

$$
\begin{aligned}
& \int_{0}^{2} e^{x^{2}} d x=\frac{1 / 2}{2}\left[e^{(0)^{2}}+2 e^{(0.5)^{2}}+2 e^{(1)^{2}}+2 e^{(1.5)^{2}}+e^{(2)^{2}}\right] \\
& \approx 20.64455905
\end{aligned}
$$

If we compare this to the actual value we find that it is close but not perfect.

$$
\int_{0}^{2} e^{x^{2}} d x=16.45262776
$$

